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I. Introduction:

An important problem in image processing applications is the segmentation
of an image field into disjoint regions which may possess the same average gray

level but differ in the gpatial distribution of gray levels. These two character-

istics are generally referred to as tone and texture respectively, although more
precise definition of these terms has remained elusive. It has been emphasized
by Haralick [1], [2], among others, that a subtle relationship exists between
tone and texture which depends very much upon the resolution with which an image
is viewed. At both low and high resolution the dominant feature is that of tone,
vhile at intermediate resolutions texture is often the dominant feature. The
most widely accepted definition of texture at present [3]-[5] consists of a basic
local order or quasi-homogeneous pattern which is repeated in a "nearly periodic"”
manner over some image region which is large relative to the size of the local
pattern. We accept this as a working definition in what follows although with
some qualification on the "neurly periodic" repetitiveness attribute.

A number of techniques for texture discrimination have been proposed and
have achieved considerable success, although generally under well-defined and
rather limited operating conditions. These techniques can be classified as
either structural or statistical in their approach. Our interest here will be
in a purely statistical approach. Structural approaches are described by
Zucker (6], and Lu and Fu (7], among others. Recent work by Haralick [8] pro-
vides a comprehensive survey of most existing statistical techniques which he
classifies into eight broad categories possessing some degree of overlap.

For example, consider Haralick's first three categories; those based on auto-

correlation functions, optical transforms, and digital transforms. In reality
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these techniques are all based upon second-moment properties and can be )
collectively classified as such. The major classifications of statistical approaches
to texture classification/discrimination are then, following Haralick, those
based upon: second-moment properties, edge density, spatial similarity, spatial
gray-level co-occurrence probabilities, gray-level run lengths, and finally %»
i ugse of two-dimsnional (2-D) autoregressive modeling assumptions. As Haralick :
correctly points out, the spatial similarity approach is restricted to binary
images while the 2-D autoregressive linear estimation approasch is severely }

limited in the cleasses of texture for which it is useful. In particular, the

it

2-D asutoregressive process does not, except under pathological assumptions,
E' exhibit the local pattern ¥eplication attribute considered an essential in-
f gredient of texture. As a result, the competing statistical approaches for
; general application to texture discrimination are reduced to the four remain-
ing categories as enumerated above,
Many of the specific techniques in these remaining four categories are

o based upon heuristic or ad hoc arguments while a comparative few have been

based upon the rigorous application of statistical decision theory concepts

under specific stochastic modeling assumptions. A comparative study of

several of the more frequently used statistical approaches is provided by ;
i Weszka, et al. [9). In particular, the efficacy of various features, drawn |
i from these four categories, was investigated in the context of terrain classif-

ication. While results of this nature are useful they provide little guidance

‘on how the relative performance is affected under various modeling assumptions.

' It is difficult, for example, to extrapolate the resgults of these and similer

studies to applications beyond the specific data base for which performance

has been provided. Clearly, use of more general 2-D stochastic texture models
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vhose parameters can be easily related to texture properties would remedy
this situation.

Much of the work on texture discrimination has been guided by human visual
discrimination studies. Several researchers [10], [11] in this area have conclud-
ed, although with some qualification [12], that humans can effortlessly differ-
entiate texture regions which differ in second-order statistics but cannot
discriminate between regions which differ only in third and higher-order statistics.
This is supported by the degree of success achieved with texture discrimination
algorithms based upon second-order properties alone, such as second-moment
techniques utilizing autocorrelation functions or power spectral densities.
Nevertheless, for virtually all the existing techniques it is possible to
contrive counterexamples which, although effortlessly discriminated by human
observation, cannot be discriminated by algorithmic means.

In Fig. 1, for example, we illustrate realizations of two random fields+ which
are visually distinct yet possess identical autocorrelation functions and/or
pover spectral densities. These fields cannot be distinguished by algorithmic
approaches based upon second-moment properties alone. Similarly, in Fig. 2,
we illustrate several realizations of random fields which possess the same
number of edges per unit distance and are such that the average gray-level run
length along any randomly chosen line segment is identical. Again these texture
regions are easily discriminated visually although algorithmic techniques based
on either edge density or gray-level run lengths alone cannot discriminate the
various texture regions. Finally, it is possible to contrive random fieldsl
whose joint probability density function at two points separated by a specified

distance d are identical, although this need not be true for all values of d.

+ The parameters defining the 2-D random fields in Fig.'s 1 and 2 will
be described in a later section.

e e ke = e




The implication here is that, unless the separation distance d is'Judiciously
chosen, texture discrimination algorithms based on spatial gray-level co-occurr- Q
ence probabilities are incapable of distinguishing visually distinct texture
samples. Again this points out the need for texture discrimination approaches
based upon rigorous application of statistical decision theory concepts under
specific and flexibly parameterized stochastic modeling assumptions.

In the present paper we describe a class of 2-D random fields, of which
the samples in Fig.'s 1 and 2 are selected realizations, which we feel provides
a realistic and conveniently parameterized model of texture in images. This
class of random fields bear some relationship to the random mosaic models for
texture described by Schachter, et al. [13]. Based upon this stochastic model
we propose a new approach to texture discrimination which is an approximation
to the statistically optimum maximum likelihood classifier. This approach, for
reasons to be described, makes use of the spatial gray-level co-occurrence matrix
introduced by Haralick [1], [2]. However, unlike the Haralick approach, we do

not make use of heuristically defined features for extracting texture information

from the spatial gray-level co-occurrence matrix. Rather our approach is based

upon a maximum likelihood hypothesis test of the gray-level co-occurrence matrix.

This leads to a rather simple implementation as a 2-D digital filtering operation
i on the original image. Results indicate a substantial performance improvement

over competing approaches.

After some preliminary comments on 2-D random fields in Section II, the con- ]
struction and properties of the stochastic texture model are described in Sections
IIT and IV respectively. The structure of the maximum ;ikelihood texture dis-

criminator is provided in Section V while the approximate digital implementation

& is described in Section'VI. Typical results are illustrated in Section VII while

Section VIII provides a summary and conclusions.
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II. Preliminary Discussion:

We consider an image as a family of random variables {fx(w), §§R2} , OF

a random field, defined on some fixed but unspecified probag;iity space (§,A,P).
For convenience we suppress the functional dependence upon the underlying prob-
ability space and consistently write f(x) for fx(w). The covariance function
of the random field then becomes+ -

Roo(xy) = B2} ;5 xyer® (1)
vhere E{*} represents the expectation operator. If a random field {f(x), E;Rz}
possesses a covariance function invariant under all Euclidean motions it will

be called homogeneous and isotropic (cf. [14] for definitions). In this case

the covariance function of the field evaluated at two points can depend only
upon the Euclidean distance between these two points so that

E{r(x+u)f(x)}= Roo(||ul]) , (2)
where 3? =(ul,u2) is an element of R2 and ||gj| represents the ordinary Euclidean
norm defined in terms of an inner product <e¢,+> according to

Nul|? = @, w = w2 +u? (3)

By construction, the 2-D random fields to be described here are of this
category. Furthermore, they have been explicitly constructed so that the
joint probability density function {p.d.f.) of the field evaluated at two
points likewise depends only upon the Euclidean distance between these points.
More specifically, define the random variables fl=f(5) and f2=f(§fg). The joint
p.d.f. associated with these two random variables, parameterized by the spatial

coordinates, then satisfies

plf .5 x,xvul} = plf) 05 {lul{}, (1)

' We assume the field is of second order (i.e., variances exist) and possesses
zero mean.

]
{




which i1s the 2-D concept of stationarity [15] or invariance which will be most
useful for our purposes.

The corresponding povwer spectral density function is given by

Spp(w) = Jz Rop(llul Dexpl-3 @,u>}au , (5)
R

where gF = (wl,w2) represents a 2-D spatial frequency vector and du is the
differential volume element in Ra. This expression can be evaluated up to

functional form with the aid of a theorem of Bochner [16] with the result

Spplw) = s(a) = 2n r A Roo(R) JO(MZ)d)L R (6)
0

Ya

where 2 |[g||=(wi+m§) represents radial frequency. Here JO(-) denotes
the ordinary Bessel function of the first kind of order zero. The quantities
Sff(o) and Rff(-) are then related through a Hankel transform [17], [18].

An important aspect of the approach to texture discrimination described
here is the use of a stochastic texture model whose second-order statistics
are iavariant under both translation and rotation. Various stochastic texture
models proposed previously do not possess this property. For example, much
use has been made of 2-D autoregressive models [19]-[21] for texture, often
under a separability assumption in the two orthogonal spatial directions.
These processes cannot possess second-order statistics invariant under all
rigid body motions. On the other hand, we feel stronglyithat a reasonable
texture model should possess this property. Texture should retain its ident-

ity regardless of the orientation or perspective in which it is presented.

Use of naturally occurring textures exhibiting obvious directional properties,

such as those in the book by Brodatz [22], serves only to obscure this issue.




Had many of these samples been presented in a different orieptatioh would a
different texture category have resulted? We feel rather that these examples
should be more properly considered sample fields or realizations of a

random field as defined here. While particular realizations may well exhibit
directional characteristics, the ensemble properties, at least up to second-
order statistics, should be invariant under rigid body motions.

Another criticism of existing stochastic texture models, such as auto-
regressive processes, is the inability to account for the predominant and
pronounced edge structure present in real-world imagery. Often this edge
structure provides an important aspect of the. rather imprecise concept of
perceived texture. Finally, and most importantly, existing stochastic
texture models do not provide the basic repetition of a local order or pattern
generally considered [3], [L4] an important ingredient of texture. The stochas-
tic texture models described in the next section remove many of these object-
ions. Furthermore, the mathematical tractability associated with these models
allows straightforward development of statistically optimum texture discrim-
ination algorithms.

IIT Construction of Random Field Models of Texture:

The class of random fields to be used as stochastic texture models can
be described as marked point processes [23] evolving according to a spatial
parameter. According to this model the plane is randomly partitioned into
a number of disjoint geometric regions by an appropriately defined field of
random lines which form the boundaries of these regions. The density of
these random lines, or edges, is defined in terms of a rate parameter A.

Gray levels are then assigned within elementary regions to possess correl-

ation coefficient p with gray levels in contiguous regions. We describe




several schemes for partitioning the plane into elementary geaometrical
regions. Given a particular partitioning scheme, the random fields are
completely defined in terms of the two parameters A and p. The parameter
A represents the "edge business" associated with an image while p is indic-
ative, at least on an ensemble basis, of the "edge contrast". For p large
(in magnitude) and negative there is an abrupt almost black-to-white or
white-to-black transition across an edge boundary. If p>0, on the other hand,
the transition across an edge boundary is much more gradual. It is relative-
1y easy to define these parameters for wide classes of imagery data.

In the present section we describe the construction of this class of 2-D
random fields. Relevent second-order properties are discussed in the next
section. We begin with the case where the plane is partitioned into random

rectangular regions.

Rectanqular Pantitiond:s A fundsmental role in the construction of this class

of processes will be played by the integer-valued random field+ {N(x),x>0}

which provides a 2-D generalization of a counting process [24k]. In particular,

suppose the vector X is obtained from x according to i?é X where A is the

unitary matrix
cos® sind
A= , (1)
-s5in® coso

defined for some 6e[-m,m]. This transformation results in a rotation of the
Cartesian coordinate axes (xl,xz) by © radians as illustrated in Fig. 3.

Consider now the integer-valued random field defined by
(8)

N(x) = N (%) + Ny(X,) 5 x>0

};

By the notation x > 0 we mean that g?s(xl,xz) is such that x

420, 1=1,2
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where 8e[-m,n] is chosen according to some p.d.f. p(6) and {Ni(l), £>0},

i=1,2, are mutually independent 1-D counting processes. That is, Ni(z)
represents the number of events which have occurred in the interval [0,%].

We will be particularly concerned with the case where {Ni(l), 220}, i=1,2,

are renewal point processes defined in terms of their interarrival distribution.

The random field {N(x), x > O} in (8) then assumes constant integer values
on non-overlapping rectangles whose sides are parallel to the transformed axes
(11,12) and whose locations are determined by the event times of the corres-
ponding point processes {Ni(z), 2>0}, i=1,2 . Consider now the random field
{f(x), x > 0} which undergoes transitions at the boundaries of these elementary
rectangles. The gray level assumed throughout any elementry rectangle is zero-
mean Gaussianf with variance o2 and correlation coefficient p with the gray

levels in contiguous rectangles. More specifically, let Xi represent the
9

J
amplitude or gray level assumed by the random field after i transitions in

the il direction and j transitions in the 12 direction. The sequence {Xi J}
*

is assumed generated recursively according to

- —p? ;1,9
X070 %1, 5% Xy g1 P X5y 2 DD (9)

where |p|< l,a.nd{wi J} is & 2-D sequence of independent and identically dis-
- ’

tributed (i.i.d.) zero-mean Gaussian variates with common variance o:=oz(l-pz)z.

The initial values xk,O’ Xo,l, k,2 > 0 are Jointly distributed zero-mean
Gaussian variates with ccmmon variance 02 and covariance properties chosen
to result in stationary conditions. An alternative interpretation of the
sequence {xi,J} is as the output of a separable 2-D recursive filter excited

by a white noise field. It is easily seen that

i For definiteness we assume Gaussian statistics. This assumption is not

critical to the development which follows and is easily removed.




}=0%p ; k. ,k. >0

E{ 172 = : (10)

X, X
1,971+k,,3%k,

Typical computer-generated realizatioms of the resulting random field are
illustrated in Fig. 4 for selected values of p when p(8) is uniform over [-mw,m]
g and {Ni(l), 2>0} , i=1,2,are Poisson with intensities Xl=k2=k. The displayed
images here and throughout this paper are square arrays consisting of 256
elements or samples on & side. In Fig. 4, A\ is measured in normalized units -
of events per sample distance so that there are on average 256\ transitions 3
along each of the orthogonal axes. Similarly in Fig. 5 we illustrate real- ‘

. izations of the resulting random field when the point processes {Ni(l), 230},

i=1,.., undergo jumps of unit height at equally spaced intervals 2=1/X. The

starting positions €,, i=1,2, will be assumed uniformly distributed over the

i’
interval [0,R].
The preceding two examples are special cases of the situation where the

point processes {Ni(z), £>0}, i=1,2, are _stationary renewal processes [25], [26]

with Gamma distributed interarrival times. This class of random fields re-

presents a 2-D generalization of the class of 1-D processes described in [27]. ;
In particular, we assume the common interarrival distribution of the two

mutually independent point processes {Ni(l), 2>0}, i=1,2, possesses p.d.f.

o1 |
e ewlx/E) (11)
v

f(x) =

Eehaiatit)
[

where v=1,2,..., and B=1/Av for fixed A>0. For example, if v=1 we have the
exponential distribution
-A
£(x) = Ae 3 20 (12)

associated with the Poisson process, while in the limit Vv+® we have

f(x) = 8§(x-1/2) ; x>0, (13)

corresponding to the case of periodic partitions as illustrated in Fig. 5.
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In Fig. 6 we illﬁstrate selected realizations of the resulting rgndon
field for several values of v all with A=0.05 and p=0.0. Clearly tﬁe para-
meter v piovides a measure of the degree of randomness or "homogeneity" of
the structure. In this sense, this model does provide the pattern replica-
tion attribute. For small v the random field {f(x), £;R2} appears as a
random rectangular mosaic. As v increases, individual realizations rapidly
approach a more periodic mosaic in appearance. The parameters A, p and v then
completely describe this class of 2-D random fields.

Although this class of 2-D random fields provides a useful model of tex-
ture in selected applications, the rectangular mosaic exhibited by individual
realizations is not entirely consistent with edge structure in real-world imagery.
That is, we would expect the edge structure to exhibit a much more random edge
orientation. An alternative approach then is to randomly partition the plane
into more complex geometric regions. In what follows we describe one such
approach where the plane is partitioned into random polygonal regions. Other
approaches are described in [28], [29].

Pobygonal Partitiond: consider the partition of the plane R° by a field of

L)

random sensed lines. More specifically, an arbitrary sensed line can be
described in terms of the 3-tuple (r,8,;). Here r represents the perpendic-~
ular or radial distance to the line in question, 6e[-m,7] represents the
orientation of this radial vector, and finally { is a binary random varisable
assuming values *1 which specifies the sense or direction imparted to this
line segment. The pertinent geometry is illustrated in Fig. T for the case
&=1. By virtue of the direction imposed on this line segmen£ the plane is
partitioned into two disjoint regions, R(right of line) and L(left of line)
such that RUI,=R2.

Now consider the field of lines generated by the sequence {ri,ei,ci}.

Here the sequence {ri} represents the "event times"” associated with a

e Sl - e s
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homogeneous Poisson process {N(r), r>0} with intensity A events/unit distance
evolving according to the radial parameter r. The sequence {91} is i.i.4d.
and uniform on [-m,n] while {z,} is also i.1.4. assuming the values 1 with
equal probability.

The field of random lines so generated results in a partition of the plane
into disjoint polygonal regions. Gray levels are assigned as described in [30]
to result in correlation coefficient p with gray levels in contiguous regions.
Typical realizations of the resulting random field are illustrated in Fig. 8
for selected values of ke=A/w and p. The quantity Ae represents the average

edge density along any randomly chosen line segmentj- This random field is

again described in terms of the two parameters ke’ or equivalently A, and p.
This class of 2-D random fields can be extended to include more general point
processes {N(r), rzp} controlling the radial evolution; for example, station-
ary renewal processes with Gamma distributed interarrival times. Unfortunate-
ly, the analysis of the resulting processes becomes quite complicated and as
a result we will not pursue this generalization here.

IV. Second-Order Properties

We turn now to the second-order properties of the class of 2-D random
fields described in the preceding section. In the interests of bdbrevity the
treatment will be condensed and will make extensive use of results reported
elsewhere.

Rectangular Partitions: pg a first step in the development of the covariance

function, assume that the random orientation 6c[-m,m] has been chosen and that
+
k transitions have occurred'+betveen the two points x and x + u vhere we

assume for the moment u > 0. It follows from (10) that

+ Similarly, in the case of rectangular partitions it is easily shown that
the average edge density along any randomly chosen line segment is A =Ur/w.
We will consistently use the subscript e to indicate edge density algng a
randomly chosen line segment to distinguish from the corresponding unsubscripted
rate parameter A generating the random partition.

++ By this we mean that k=k.+k, where k,, i=1,2, represents the number of
transitions along each o} tge orthog*nal axes which have now been rotated
by 0 radians.

12
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E{f(x+u)f(x)|6,k} = 0%~ ; k=0,1,2,... . (1)

The conditioning upon k is easily removed according to
)
E{f(x+u)f(x)|6} = I E{f(x+u)f(x)]6,k} pkle(g) , (15)
k=0
where pk!B(B) is the probability of k transitions between x and x+u given that
K | 0 is acting. We exploit the stationary renewal properties of the point pro-
cesses {Ni(l), 2>0}, i=1,2, in writing this probability as a function only of

the displacement u. In particular, pkle(g) can be evaluated according to

k
= s k=0,1,,.. 3
where qgig(ﬁi) is the probability that'{Ni(l), 2>0} has undergone J transitions
in the interval ﬁi, i=1,2, which depends upon g?=(ul,u2) and 6 according to ;f
u, = ulcos9+uzsin9, (17a)
and
i, = u,cosb-u, sind. (17v)
g Substituting (14) and (16) into (15) we obtain
ot (1) (2) |
2 ~
E{f(x+u)f(x)|6}=0 kzo p Z q Jle(ul)qale(ué) s (18)
‘g and by simple rearrangement of the double summation in this last expression
| we find
i
Y ' - ©
N ; 2 k-3 (1) 3 (2),~
, E{f(x+u)f(x)|6}=0 z Zp Q. Jle(ul)p que(“z)
J=0 k=]
ﬁ? " a (2) (19)
- [qum(u)][Zp a1 (Ey)] -
' Assuming a uniform distribution for 6, it follows that the covariance function
- becomes
- -
’ 1
Rop(x+u,x) = EJ E{f(x+u)f(x)}0}a® , (20)
-7
. i
e ;
i
i
13 '




with the integrand given by (19). While not immediately apparent, it is

easily shown that this last expression depends only upon ||u|| so that the
A resulting random field is indeed homogeneous and isotropic. ]
‘K While explicit evaluation of (20) is in general quite cumbersome, it

can be evaluated in special cases. For example, in the Poisson case v=1,

G ol 00

;ﬂ : it can be shown [31] that

’ 202 m/2
Roolllull) = 5 I exp{-¥2(1-p)A| Ju| |cos(8-m/4)}a6 (21)
0

while the corresponding power spectral density computed according to (6)

becomes

-

Y
S¢0(0) = 8(1-p)ro* 1 2, (22)
Q2+2(1-p) 222 |Q%+(1-p)2A2

Typical covariance surfaces together with intensity plots of the corres-
ponding power spectral density in the case of periodic partitions (i.e.,vsw)
; are illustrated in Fig. 9. The autocorrelation functions are plotted as a
function of the normalized spatial varisble' |lu]|/2 over the range 0<||u||/%<3,
= while the power spectral density is plotted as a function of the normalized

spatial frequency variable Q/2mA over the range 0<Q/2mA<5. Additional details

can be found in [32]. Explicit evaluation of these quantitites for the general §=

case of Gamma distributed interarrival times is provided in [29].

W Y R

Similarly, the conditional joint probability of fl=f(§) and f2=f(5fg)

given both the random angle 6 and the number of transitions k between x and

xtu is easily shown to be given by++

o

&2 ¢ 0.k} 1 £2_00%r, £, 412
. pif. ,f 3x, x+tu|6,kl}= exp ¢« ; k>0
f 172 21r02/1-p2IE 202(1-02k)
. 1 £2
= —— exp {- =7 H8(f -F,) ; k=0 . (23)
,—-ZH’O 20 1 72 2

%,

+Here 2 = 1/A with A the common rate parameter of the two mutually independ-
ent point processes which provide rectangular partition of the plane.
++

It is at this point that the Gaussian assumption is crucial.
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Note that this quantity is independent of x, x+u and 0; we will make use of
this observétion later.
The conditioning upon k in this case is easily removed according to
o
plf £, x, xtule)= kZO pif;.f,; x, mla,k}pkle(g)
P
= kzo B (£3:2,)py () (24)

where pk|e(g) has been defined previously as the probability of k transitions
between x and x+u given that 8 is acting. We have used hk(fl,fz) in the
second expression of (24) in order to emphasize the functional independence

. of the spatial parameters x and x+u and the rotation angle 6.

;.‘ Again under the assumption of uniform distribution for 6, the jJoint p.d.f.
can be evaluated as

1 T oo
. plf .t 5%, xtul= 5o J plf),1,:x, ygle}d%kzohk(fl,fa)pk( Hal),  (25)
. = =
V where Al v
p(llull) &5 I Py[olw)a® (26)

-7

and we have made explicit use of the fact that the integral on the right-hand
side of this last expression depends only upon the Euclidean distance ||u||.
It follows that (4) is indeed satisfied and hence the 2-D random field is

homogeneous and isotropic through all second-order statistics.

To complete the evaluation of the joint p.d.f. p{fl,fz;llgll} it remains

to provide explicit evaluation of pk(||g||) in (26). This has proven quite

cumbersome in general, although quite tractable in several important special
o cases. For example, again in the case v=1 corresponding to Poisson partitions,

' it can be shown [29] that
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ik o0

s/B ul 116 Y
pk(l|31|) e cos 0 exp{-/2A||u||cosB}dB ; k=0,1,..  (27)

0

which does not seem capable of further simplification. At any rate, this
expression is easily evaluated by numerical integration. Substitution into
(25) then yields explicit evaluation of p{fl,f2;||g||}. Actually, for eval-

uation and display purposes, it proves convenient to consider a normalized

version of this Joint p.d.f. defined according to+

. =g2 .
ot 7y lul V=07 ot ot Ll |} (28)

1]

which is plotted in Fig. 10 as a function of fl,f for selected values of p

2

~ and the normalized displacement adx el |u||. . Here the point f =f_=0 appears

172
in the center and the plots cover the range —35fi53’ i=1,2. Note the high

concentration of discrete probability mass along the diagonal fl=f2 for small
values of 4. This is a direct result of the high probability of x and x+u
falling in the same rectangular regions and thus resulting in identical values
for fl=f(§) and f2=f(512). This probability dimishes for increasing d. In-
deed,as indicated in Fig. 10, this "ridge line" along the diagonal has
virtually disappeared for d@w8. The off-diagonal probability mass visible for
p ==0.9 is a direct result of the negative correlation while for p=0.5, as
expected, there is visible probability mass distributed along the main diagonal.
For p=0, of course, this distribution is circularly symmetric about the origin.
These observations are more apparent in Fig. 11 which illustrates intensity
plots of the logarithms of the corresponding p.d.f.'s in Fig. 10. Note, the
almost identical circularly symmetric distributions which result for large d'
independent of the value of p. This says, in particular, that if random

fields possessing different values of p are to be distinguished on the basis

+

The net effect of this normalization is that the fl,fz axes can be considered
normalized to the standard deviation o¢.
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of second-order probability distributions the normalized displacement d' must be

chosen judiciously. Values of d' which are either too small or too large provide

little discrimination ability. Values of &' close to unity appear to offer

P the maximum discrimination ability. We will have more to say on this point
Ei later.
Ff _ PoLygonal Partitions: The second-order properties of this 2-D random field

have been described in some detail in [30). Here it is shown that, under the
X assumption of a Poisson line process generating the partitions, the auto-

correlation function is Tiven by

(29)

- [
L k
St Roe(|lul]) =o% © (1,00 lul]) + 2 k£1 P (A | laf DY,

where Ik(o) is the modified Bessel function of the first kind of order k.

Similarly, the corresponding power spectral density is evaluated according to

_ 202(1-p2) (" 1-cos¢ d¢ 3 .

Sff(n) - X: 1-2Pcosé+p ¢ [(Q/Ae)2+(l-cos¢)2]’2 (30)
A 0 |
Thesg quantities are illustrated in Fig. 12 for various values of p. One not-
able characteristic of this random field is that the power spectral density

_3

behaves as (n/xe) ! for small values of (Q/Ae), i.e., Sff(n) has a singular-
ity at the origin'except for p=-1. This high concentration of energy at low

spatial frequencies is a direct result of the construction procedure which

allows relatively large correlations between gray levels in regions relative-
#;“ ly far apart. We feel that this characteristic is typical of selected texture
T processes and as a result it was purposely built into the construction proced-
g ure.
Finally, following the procedure described previously in the case of
rectangular partitions, the jJoint p.d.f. is easily shown to be given by (25)

with the sum extended over both positive and negative values of k and
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In Fig. 13 we provide intensity plots of the logarithm of Po{fl’f23||£||} as a

function of fl and f2

esting observation to be drawn here is the persistence of the diagonal "ridge

for selected values of p and df’le||21|' An inter-

line" with increasing values of d&. This is, of course, a dir»ct result of
the construction procedure which allows return to the same gray level at

distant spatial locations with relatively high probability.

Comment: The comments made previously in relationship to Fig.'s 1 and 2 can
now be explained in terms of the preceding properties of the 2-D random field
nodels of texture. For example, in the case of rectangular Poisson partitions
the autocorrelation function and/or power spectral density, computed according
to (21) and (22) respectively> depend only upon the product (1-p)A . The
sample fields in Fig. 1 have been chosen to maintain a constant value for
this product and hence possess identical second-moment properties. Similar-
ly, fpr this random field the average edge density along any randomly chosen
line segment can be shown to be given by Ae=hl/"- The sample random fields

in Fig. 2 all possess identical values for Ae and hence cannot be distinguish-
ed on the basis of either edge density or average gray-level run lengths
alone. Finally, as we have observed in conjunction with Fig.'s 10 and 11,

it is possible for two visually distinct random fields to possess the same
Joint p.d.f. for some, but clearly not all, displacement distances d. Again
this points out a potential problem associated with discrimination approaches

based upon spatial gray-level co-occurrence probabilities.
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V., Log=Likelihood Texture Discriminator:

We suppose that each point of an image array {fi,3}§,3=1 is known to be
associated with ope of a finite number K of texture classes or hypotheses
labeled Hi’ i=0,1,...,K-1, respectively. Furthermore, the array {fi,J}f,J:l
will be assumed to have been obtained by discrete homogeneous sampling of
corresponding sample functions {f(g),‘gsRQ} of 2-D random fields as described
in preceding sections. Typical realizations are illustrated in Fig. 1k in
the case of the rectangular partition process. Here various texture samples
are provided in different corners of an image which are labeled as points on
a compass, i.e., NW indicates the northwest corner, E indicates the east, etc.
In the top row of Fig. 14, the parameter v is held fixed for each image while
p is varied. Similarly, in the bottom row p is held fixed for each image
while v is varied. 1In all cases the edge density is held fixed at A=0.50.
Additional examples have been provided previously in Fig.'s 1 and 2. Our
interest then will be in discriminating between the various texture regions
and accurately detecting the boundaries between these regions.

An optimum texture discriminator, which minimizes the classification error,
should clearly be based on a threshold test on the likelihood functional or
some monotonic function of it [33], [34]. More specifically, suppose a window
of size (2M+1)x(2M+1l) is constructed about each pixel position (i,3). The
observations at pixel positions within the window centered at position (i,J)
will be denoted

F,,={ ~M<k<i+M,J-M<2<j+M} ; 1,J=1,2,...,N

where we assume M<<N and neglect the boundary effects. The likelihood

functional with the window centered on pixel position (i,J) and assuming the




k'th hypothesis acting is then defined according to

{(F. |H}
A U L .
IH({Fi’J} pO{Fi J} ; k=0,1,...,K~1 (33)

where po{'} is an appropriately defined p.d.f. independent of which hypothesis

is acting and serving merely to provide a convenient normalization. As the

window is scanned accross the image array {fi j}g 3=
’ s

is assigned the value k(i,J) corresponding to the index which maximizes the

10 each pixel position

class-conditional likelihood functional in (33). That is, k(i,J) = kO if

A, {F, [} = max {F, .} . (3k4)
ko 1,3 01k_<_K—1Ak 1)

In this way each point will be assigned to one of a predetermined collection
of texture classes on the basis of local gray level values in a way that
minimizes the classification error. Boundaries can be determined by edge
detection of the resulting array {k(i’J)}E,J=1 .
There are several difficulties with the approach described above. First,
in order to implement the likelihood functional in (33) we require explicit
knowledge of the joint p.d.f. of order (2M+l)x(2M+l) for the underlying 2-D
random field {f(x), zng}. It is very rare that this information would be
available. For the 2-D random fields described in the preceding sections
we have been able to determine the Joint p.d.f. p{fl,f2;||3J|} for two points
separated by the distance ||u||; higher order p.d.f.'s are somewhat intractable.
Furthermore, even if these high-order p.d.f.'s were available any texture dis-
crimination approach based upon the 1ikelihood‘functional would be so finely
tuned to the modeling assumptions that it may be of questionable utility in
a practical application. We might prefer a suboptimum although, hopefully,

more robust approach.
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E A reasnnatle suboptimum approach would be to perform a data reduction

i

on the seguence {Fi,J} of observations to result in measurements which are
mere tractable .l at the same time relatively robust. The reduced data
can then be used in a subsequent log-likelihood discriminator. There are
many candidates for the data reduction operation. We have found it useful
to make use of histograms of gray-level co-occurrences. More specifically,
suppose that the original image array {fi,J}?,J=l is quantized to Q levels
labeled 0,1,...,Q-1. Haralick and his co-workers [1]-[2] have introduced
the concept of the gray-level co-occurrence matrix. This is a QxQ matrix

with (m,n) element P; {m,n; d,8} defined as the number of times the gray

»J
levels m and n occur separated by 4 pixels at an angle 6 within a window of
size (2M+1)x(2M+1) centered at pixel position (i,j). Furthermore, since
the texture models under consideration are invariant under rotations we
utilize a version of the co-occurrence matrix which is an average over all
8 and denote the result by 13’J(d). The proposed texture discriminator is
then implemented as a log-likelihood test on the sequence {PE,J(d)} for a
fixed value of d. A block diagram of the resulting log-likelihood dis-

criminator is illustrated in Fig. 15. The pixel position (i,3j) is assigned

, the value k(i,j)=ko if

Iy (P g(@) = max  L(p (a)) (35)

where
p{P, .(d)|H }
L (P ,(a)} & on . ?;;j (d)I; ; k=0,1,...,K-1 , (36)
b} . J

b ! represents the class-conditional log-likelihood functional.

v — e

Haralick has advocated use of the gray-level co-occurrence matrix

differently than that described here. More specifically, he has proposed
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14 functionals or discriminants defined on the gray-level co-occurrence

matrix which are intended to discriminate among different texture regions.
While these quantities have been shown to be of value in selected applica-~
tions they are based upon heuristics for the most part. Here the use of
Pi,J(d) in a maximum likelihood detector is more solidly based on statistical
decision theory concepts. The primary motivation for employing Pi,J(d) to
effect the data reduction in Fig. 15 is the analytical simplicity which
results. The conditional p.d.f.'s p{Pi,j(d)IHk} , k=0,1,...,K-1 are easily
evaluated in terms of the joint p.d.f. p{fl,fz;llgjl}as demonstrated below.
Use of second-order p.d.f.'s provides a logical extension of techniques
based upon either correlation properties or edge density. This choice has
also been influenced by the general inability of humans to discriminate
textures which differ only in higher order statistics.

In the implementation of the log-likelihood texture discriminator a
critical simplifying assumption is made concerning the construction of the
Pi,J(d) matrix. Specifically, we assume that each pair of points counted in
producing Pi,J(d) has its intensities assigned independently of every other
pair of points. Clearly this is not generally the case for the 2-D random
fields described in preceding sections. Nevertheless, Justification to
some extent follows from the assumed ergodic properties of the underlying
random fields. In particular, we assume that spatial averages over the
observation window approach ensemble averages asymptotically as the size of
the window increases. As a result, the empirical distributions constitut-
ing elements of Pi,J(d) approximate the true probability distributions of
corresponding spatial gray-level co-occurrence events. Hence, provided the
observation window is large enough, the matrix Pi,J(d) is indistinguishable
from that which would have been obtained from a set of independent samples

of the same process.
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The description of the log-likelihood texture discriminator illustrated in Fig. 15

PRAAEI A 1 4

is then complete once explicit evaluation of the class-conditional log-likelihood

functicnals Lk{P:

-9

ﬂ(u)} is provided. Under the independence assumption de-
scribed above, the evaluation of p{Pi’J(dHHk} , k=0,1,...,K-1, is described

in terms of the multinomial distribution [15],

Q-1 .
_, . (m z=0pi,J(M.n;d))! Y pi’J(m’nsd)
i olp; J(@)[H} =22 L ¥ RCH ' (37)
: I I (p, (m,n;d)!)m’ngo
m,n=0 i,d

where Q n(d;Hk) is the probability of observing gray levels m and n at a
k]
particular pair of points separated by distance d under hypothesis Hk’ k=0,1,

... K=1. For convenience we take the normalization functionafpo{Pi J(d)}

Q-1

. lZFOI)i’J(m,n;d))!

potPy, 5 (A} = 47 :
BEE (p; ;(m,n;a)1)

m,n=0Q

k]

as

(38)

It follows from (36) that the class-conditional log-likelihood functionals are given

by

Q-1 Q-1 3
{P, ()=} p. .(m,n;d)2 (m,n3;d) ; k=0,1,...,K-1 , (39) :
RREN n=0 nZO 1 k
; where ?
1
; £, (m,n;a) 4 4n NG . (ko)

N This latter quantity is easily computed from the joint p.d.f. of the underly- !
ing 2-D random field. Suppose that the {fk(z), 5§R2} represents the random ]

T field associated with hypothesis class H , k=0,1,...,K-1, and possessing

k!
g Joint p.d.f. p {f,f;]]ull}. Then

j .: m+l n+l
Nd Qm n(d;Hk) = J I pk{fl,fz;dAL}dfldf2 » (k1)
s
E E
m n

¥ Strictly speaking this is not a p.d.f. but does provide a convenient normal-
/ ization of the class-conditional log-likelihood functionals.
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where Ez' £=0,1,...,Q-1 represents the lower boundaries of the quantization

bins associated with level %, and AL represents the spatial sampling interval.
The likelihood functional defined by (39) has a simple interpretation as

an inner prbduct operation. More specifically, let Lk(d) represent the QxQ

array with (m,n) element lk(m,n;d). Then (39) becomes
L {P J(d)} = <P, J(d), L (d)> 5 k=0,1,...,K-1 , (k2)

where we have made use of the inner product

<A, B>= tr AT (43)
defined on the space of QxQ matrices. The precomputed elements of Lk(d) can
be stored in a table and accessed as required. Computation of the inner
product in (42) is relatively simple. The major computational burden is
associated with computation of the P;’J(d) matrix. In the next section we

describe a simple digital implementation of the log-likelihood discriminator

which does not require explicit computation of P (d). This approach is

i,J
based upon 2-D Weiner filtering concepts. The result is a computationally
efficient implementation as a 2-D recursive or infinite impulse response

(IID) digital filter. Furthermore, the recursive implementation leads to a

simple method of avoiding the block structure associated with the windowing

operation.

VI. Digital Filter Implementation of Log-Likelihood Discriminator:

The log-likelihood functional described by (39) and the sequel requires
a summation over gray levels or intensities. This can be replaced by a spatial
summation and leads to a simple implementation as a 2-D digital filtering
operation. In particular, recall that pi’J(m,n;d) is simply the number of
times that gray levels m and n occur at a pair of points separated by d

pixels within the window ﬂ& 5 centered at pixel position (i,3J). It follows
9
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that the class-conditional log-likelihood functional can be rewritten
as

L {F, .;u} = ) ' g (f
9 k1, (rgs)eg. (u,v)ES(r,s;d)l\wi §

i,d
sk=0,1,...,K-1,

d) (Lk)

f .
r,s’ r+u,s+v’

vhere S(r,s;d) is the set of all points which are distance d from pixel
position (r,s). The outer summation in (LlL) is over the pixel positions (r,s)
] within the window wi,J centered at (i,j) while the inner summation is over the
E set S(r,s;d)(\wi’J including only those points (u,v) within the window which
simultaneously stand in the specified spatial relationship to pixel position

(r,s). Note that this latter surmmation can be obtained by searching over a

circular neignborhood of radius of at most 4 units. We assume that appro-

priate bookkeeping has been employed to avoid double counting of pairs of
points in the specified spatial relationship. This is indicated by the prime
added to the inner spatial summation in (LL).

At this point, it is convenient to define the quantity

.

L (f

' Tp o Tpey geysd) 3 E=0,15...,K-1.
’ 9

J (45)

We are justified in expressing gk(r,s;d) as a function only of spatial

(r,s;d) 4 :
®x (u,v)eS(r,s;d)ﬂwi

coordinates (r,s) since once the sampled field {f, has been observed

}N
»J 1,J=1
this quantity is readily evaluated through (40) and the sequel. This assumes,

of course, that boundary effects along the periphery of the window wi can
]

J
be neglected; otherwise gk(r,s;d) would likewise depend upon the spatial
index (i,J). These boundary effects will be assumed negligible in what
follows. This is a reasonable assumption if d<<M (recall the window wi,J is
L of size (2M+1)x(2M+l)) which will generally be the case. It follows that

(44) vecomes
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L {1,3;d} = I g (r.,s;d) ; k=0,1,...,K-1 |, (46)
(r,s)ewi 3

vhere we have found it convenient to suppress the functional dependence upon

the observations F and simply write Lk{i,J;d} for Lk{F d}.

1,9 1,9°

Consider now how the window size might be expected to influence perform-
ance of the log-likelihood discriminator. Clearly a large window size is
desirable if the window covers an arza of homogeneous texture, as this re-
duces the probability of classification error. As the window size is increas-
ed, however, it becomes more likely that the window will contain two or more
regions of different texture classes thereby increasing the classification
error. To arrive at a reasonable compromise between these conflicting factors
the window has been allowed to be of infinite extent*but the sum in (46) is
replaced by a weighted summation. The weights can then be chosen to provide

diminishingly less weight to points the further they are from pixel position

(1,J). More specifically, we generalize (L46) to the form

L {1,3;d} = 11 n(i-r,3-s)g (r,s3d) ; k=0,1,....,k-1 , (47)
rs

with {h(r,s)} the weighting function. Note that (47) reduces to (46) under
the assumption
1 5 |r|s|3|§.M
h(r,s) =
' o elsewhere |, (L8)
Furthermore, observe from (L47) that Lk{i,J;d} is simply the output of a 2-D
digital filter with the sequence {gk(r,s;dﬂ as input. The weighting sequence

{h(r,s)} is the 2-D impulse response cr point spread function of this filter.

* Note that this justifies our assumptions that boundary conditions are
negligible in computing gk(r,s;d) from (45),

.
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There are many heuristic arguments that can be developed for'choosing
an impulse response sequence {h(r,s)}. We have found it useful to formulate
this choice as a 2-D Wiener filtering problem. More specifically, consider
the filter input sequence defined by (45) as a functién of a continuous
spatial variable x. The quantity {gk(g;d), 5§R2}'is then a 2-D random
field for each k=0,1,...,K-1, and parameterized by the distance d. Although
the exact nature of this field is rather difficult to describe precisely,
we will make some rather crude modeling assumptions which have led to some
useful results. In particular, we assume that gk(gjd) can be represented
as the sum of three separate components according to

g (x:0) = t(x)+ 1(x) +n(x) ; xeR® . (k9)
Here t(g) represents a mean-value or signal component indicative of the true
texture class. This component is constant over homogeneous texture regions
and exhibits jumps or discontinuities at the boundaries between different
textured regions. The component 1(5) represents an interference component
the nature of which is similar to the texture within a region. This compon-
ent reflects the pixel-to-pixel variations in gk(ggd) due to residual texture
components. Finally, n(;) represents an unavoidable noise component repre-
senting background noise, spurious image detail, quantization noise, etc.

In what follows the signal component t(x) will be modeled in terms of a
polygonal partition process as described in Section ITI. The edge density+ Ate’
or equivalently At, will be chosen on the basis of.an assumed density for
texture boundaries while the correlation pt=0 will be chosen to reflect com-
plete independence of texture in contiguous regions. Note that this latter
assumption implies that the distance d has been chosen appropriately to

maximize the discrimination ability; otherwise the signal process t(x)

+ Again, by our subscripting convention xte represents the edge density of the field
t(x) along a randomly chosen line segment.
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would be highly correlated in contiguous textured regions. The interference
process i(x), on the other hand, will be modeled as a texture process, either
rectangular or polygonal, possessing much higher edge density and with para- i
meters chosen to match the coarsest tefynre expected in the input image. 1In
a sense this represents a worst case choice as the coarsest (i.e., lowest
edge density) texture presents the most difficulty in separation from t(x)
by linear filtering. Finally, the noise field n(g) is assumed a white noise
field with pover spectral demsity § (%) =o§. ¥
It should be noted that the model specified by (49) is independent of
both k and d, whereas in reality we would not expect this to be the case.
Nevertheless this model has led to some useful and interesting results in
selected computer experiments, some of which are described in the next
section. The main Justification for these modeling assumptions is based upon .
rather extensive empirical observations on typical realizations of {gk(55d),§;R2}.
Although the modeling is somewhat crude, it does provide some consideration
of the relationship between the size of regions of constant texture and the
coarseness of this texture in the design of the filtering operation. Spec- i‘
ifically, there is an inherent tradeoff between the degree of smoothing of
point-to-point variations of gk(g;d) and the ability of the generalized log-

likelihood discriminator to distinguish small regions of homogeneous texture

from contiguous regions. The Wiener filtering problem then is to determine
the linear least mean-square estimate of t(x) from the noisy observations
represented by gk(gjd). The resulting 2-D Wiener filter possesses system

transfer function.
Stt(n)

By(2) =

stt(n) + sii(n)+snn(n) ’
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where Stt(ﬁ) and Sii(Q) are the power spectral densities of the true texture

component t(g) and the point-to-point interference component i(l) respectively.

As previously demonstrated, under our modeling assumptions, these quantities
depend only upon the radial frequency @ and hence the Wiener filter possesses
this symmetry property. The system transfer function in (56) can be rewritten
as

1
s (52)
sii(a) snn(n)

1+ +
stt(n) stt(n)

HO(Q) =

which suggests defining the parameters Yi and Yn as the ratio of interference

K‘ . and noise powers to the power in the texture process respectively. These
4 parameters provide a measure of the degree of degradation by interference from {

residual texture components and salt-and-pepper noise. More specifically,

§ we have
A 2, 2
v, = oi/ot , _(53&)
% wh%le Yq A U%/Ui , (53b)

s0 that the Wiener filter transfer function HO(Q) is completely determined in

terms of the quantities Yi,yn,ki,pi,k and+ pt. In any particular application

t

these can be estimated empirically or on the basis of a priori knowledige con-

g
: cerning the texture classes to be discriminated.
: The preceeding description of the optimum linear filtering operation is
|
for a continuous spatial domain; we have access only to sampled data so that
a digital implementation is required. In particular, we seek a 2-D digital

filter with system transfer function Ho(zl,ze) whose frequency response++

approximates HO(Q). While there are many digital implementations available,

*
< t Actually pt=0 in the work described here.

t+ The freq ency response of the 2-D digital filter is simply H (z,,z,) evaluated
for z,=e* "1, 1i=1,2. We assume the spatial frequency variable w; Is measured
in units of radius per sample distance.
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our approach has been to make use of a 2-D infinite impulse response (IIR)

digital filter whose point spread function exhibits four-quadrant symmetry.

The choice of an IIR filter was dictated by the computational economies which

result from the inherent recursive nature of the computations involved. Simil-

arly, the restriction to four-quadrant symmetry for {h(r,s)} follows from the

[ requirement that the log-likelihood discriminator not exhibit any directional
b sensitivities.
The IIR filters will be assumed to possess rational system transfer functions

of the form

' N M N
o Bapee) =1 Loy ited fu [T T (5w g
v Z.52,) = Z." 2 a,, 2. z . ;4
;; 0'"1°"2 i=0 3=0 iJ "1 %2 120 320 ij "1 "2 '
: i=j#0

In particular, the output sequence {yi J} in response to {xi J} as input can
] ’

be obtained recursively according to

M, N, MM
i=Jj#0

We ;ill assume that the geometry is such that this corresponds to a stable
filter recursing from the upper left-hand corner. Observe that the result-

o

"§ ing filter will have nonzero impulse response only in the lower right quadrant.

As mentioned previously, it is highly desirable that the digital filter

implementation of the log~likelihood discriminator exhibit four-quedrant
R f symmetry in its impulse response or point spread function. One method for

T achieving a point spread function with this inherent symmetry is to allow

A Ve g s FUN U S o L

K repeated application of the same filter recursing from each of the four corners.

If {n,(1,3)} represents the point spread function associated with e single

Yy

application of the filter specified by (S5i) then the composite filter possesses
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point spread function as indicated in Fig. 16. The corresponding system trans-

fer function of the composite filter is then

Yy, Yy
= =12, =12
H(zl,zz) 2, %z, Hl(zl,zz) R (56)
where
-1
+ .
H (zl,z ) =H (zl,z ) 2 H (z1 ,z )+z O(zl’ )+2122Ho(zl ,22 ). (57)
It follows that the frequency response of H(zl,zg) is identical to that of
Hl(zl’z2) up to an unimportant linear phase term. In choosing Hl(zl’z2) to
provide an approximation to HO(Q) for zi=ejwi, i=l1,2, we have restricted
attention to the case where HO(Zl’ZQ) is a simple first-order section of the
form
-1, -1 1 -1
1+b, (2 1 *% )+b11 1 %
H (z.,2,)=A . (58)
10 1 5111 2

This choice insures zero frequency response at the origin and symmetry of the
corresponding point spread function about a line at 45° to the axes, i.e.,
ho(i,J)=ho(J,i). Similar properties extend, of course, to the composite filter
represented by H(zl,22). A computer program has been written for determining

the four coefficients alo’all’ b 0 and the gain A according to an itera-

10°°11
tive gradient procedure to result in a frequency response for Hl(zl,zz) which
provides a least mean-square approximation to the desired response Ho(ﬂ). The
details of this program are described in [29].

In Table I we summarize the results of this iterative digital filter design
approach for selected values of yi,pi,ki,pt,'and At all with Y= -104B. Here
we have found it convenient to classify the interference characteristics as

weak, moderate or strong depending upon the value of Yy The parameters chosen

here are particularly relevant to some experimental results to be described in

the next section.
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Typical Filter Parameters for Y= -104B

Interference

Characteristic| i Py Ay Py A %0 89 ®0 ®yy

Weak 0.16 | 0.0 | 0.0125 | 0.0 | 0.8131 |-0.9743 | 0.9524 | 0.2915 |-0.9098

Moderate 0.16 | 0.0 | 0.0125 | 0.0 | 0.2032 |-0.9493 | 0.9036 |-0.0375 |-0.1761

Strong 0.16 | 0.5 | 0.0125 | 0.0 | 0.4220 |-0.9605 | 0.9220 |-0.8796 | 0.8u32
Table 1

For the three cases described in Table 1, the corresponding power spectral

densities Stt(Q) and Sii(ﬂ) + Snn(ﬂ),together with the resulting Wiener filter

response HO(Q),are plotted in Fig. 17 as a function of the radial frequency

variable Q.

increasing with increasing levels of interference.

Observe the lowpass behavior in all cases with the selectivity

Finally, in Fig. 18 we

illustrate 3-D plots of the desired Wiener filters and the resulting digital

approximations.

In all cases, the closest corner represents the pointf

while the farthest corner represents the point [w,w].

[‘"9"]

The left-hand column

shows the desired responses while the right-hand column illustrates the re-

sponses exhibited by the digital approximations. Note that in all cases the

lowpass nature of the optimum filter has been preserved and a fair degree of

symmetry has been retained.

t Frequency axes for
the endpoints corres
sampling rate.

8

, 1=1,2, have been normalized to the range [-m,w] with

onding to * the folding frequency, i.e., half the
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VII. Experimental Results:

Typical performance results for selected texture discriminators are
provided in Fig. 19. Here Fig. 19a illustrates the original image which
consists of realizations of three distinct rectangular partition processes
for various parameter choices. The NW and NE corners have A=0.16, p=0.0,
and A=0.32, p=0.5 respectively. These values were carefully chosen, accord-
ing to previous comments, to result in identical second-moment properties.

As a result these two fields cannot be discriminated on the basis of autocorrel-
ation functions and/or power spectral densities alone. The field in the S
corner has A=0.32 while p=0.0. Since it possesses the same edge density as

the field in the NE corner, these two textures cannot be discriminated on the
basis of edge density alone. Although somewhat contrived, we feel that this
problem provides a real challange to texture discrimination algorithms.

Three log-likelihood discriminators were designed using the filter para-
meters corresponding to the three entries in Table 1. The choice ki=0.16
corresponds to the coarsest texture in Fig. 19a while kt was chosen to epproximate
the density of texture boundaries. Recall that the edge density in this case
is given by Ate=At/w edges per pixel so that for this choice there would be on
average approximately one texture transition along the boundary of 256x256 image.
This approximates the situation illustrated in Fig. 19a.

In Fig. 19b we illustrate the performance*of the log-likelihood texture
discriminator for the case of moderate interference, i.e., the middle entry
in Table 1. The value of d used here was d=3. Ideally, this quantity should
be chosen such that dal/Ae (recall Ae=hx/w for the rectangular partition
process) to provide maximum discrimination ability. In situations, such as

that presented in Fig. 19a, where there are more than one value of edge density

T In all experimental results reported in this section the images were
uniformly quantized to Q=6l4 levels.
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associated with the texture samples to be discriminated, & reasonable choice

is to choose d =l/xg where i; represents the average edge density over all
texture classes. For the present case we have i; = ,306 and hence the choice
d=3 provides the desired approximation. Studies have indicated that perform-
ance is not a sensitive function of 4 in the range 2<d<5,although the choice
d=3 appeared to be about optimum. As indicated by Fig. 19b, the log-likeli-
hood discriminator does an excellent job of discriminating the three texture
regions except in the vicinity of either texture or image boundaries. This
performance, however, can be improved as we demonstrate subsequently.

Included in Fig. 19 for comparison purposes we have indicated the perform-
ance of alternative more conventional texture discrimination schemes. In Fig.
19¢ we demonstrate the performance of a conventional correlation discriminator.
This algorithm implements a threshold test on a least-squares estimate of the correl-
ation of pixels separated by distance d. The optimum threshold has been chosen
empirically on the basis of histogram techniques. While this approach is useful
in diseriminating the texture in the S corner from that in either the NW or NE
corner, it cannot discriminate between the NW and NE regions due to the fact they
possess identical second-moment properties. As a partial remedy to this situ-
ation we have devised a discriminant that employs both correlation and edge
density information., Since this discriminator appears sufficiently interesting
itself, we have provided details on its implementation in the Appendix. Using
this correlation/edge density discriminator some degree of success has been
achieved in discriminating between the NW and NE regions as illustrated by
the results in Fig. 19d4. The results are, however, generally inferior to the
performance of the log-likelihood discriminator.

In order to assess the sensitivity of the performance of the log-likeli-

hood diseriminator to our modeling assumptions, we have applied the three designs

3L
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described in Table 1 to the original image in Fig. 19¢. 1In all caseé we have taken
d=3. The results are illustrated in Fig. 20 and provide same indication

of how performance depends upon the choice of filtering function. In Fig. 20b

we illustrate the result under the assumption of weak interference (Yi=6dB,
pi=0.0). The boundaries between the three different texture regions, which

are actually straight lines, are irregular and small patches in each region

have been nisclassified. In Fig. 20c we illustrate performance, as in Fig. 19b,
for moderate interference (Yi=0dB’ pi=0.0). The boundaries between regions

are smoother and the misclassified regions are smaller. Finally, in Fig. 204
we illustrate performance for strong interference (Yi=6dB,pi=0.5). The bound-
aries are now much straighter and the misclassified patches have disappeared.
However, the point of intersection of the three boundaries has become ill-
defined as a result of the additional smoothing introduced to reduce the

interference. These results are useful in illustrating the tradeoffs in

choosing the strength of the interference.

VIII. Summary and Conclusions:

We have described a new approach to texture discrimination which appears
to offer considerable improvement over existing approaches under specific,
although realistic, stochastic modeling assumptions. While initial results
have been rather encouraging, much more work remains in establishing the
efficacy of this approach.

For example, we have described a Wiener filtering approach to the 2-D
digital filter implementation of the class~conditional generalized log-like-
lihood functionals. Clearly, other approaches to the digital filter design
problem are possible within the general structure of the texture discrim-
inant proposed here. Several alternative approaches are presently under

investigation.
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A more fundamental difficulty with this approach, however, is the re-

quirement for knowledge of the model .rameters for each of the texture

classes known to be acting in any discrimination application. This know- ’

ledge is required in constructing the inputs gk(i,J;d),k=0,l,...,K-l, to

the digital filters which generate the class-conditional log-likelihood function-
als. We assumed this knowledge, for example, in the experiments described in

the preceding section. 1In practice it may be possible to obtain crude esti-
mates of these parameters either on the basis of a priori knowledge or derived
from the data itself. These estimates may be sufficiently accurate to pro-

vide useful discrimination performance. An alternative may be to use a

range of "prototype" stochastic texture models which span the range of textures
of interest. Use of these "prototype" texture models in constructing corres-
ponding class-conditional log-likelihood functionals may result in useful discrim-
ination ability. Both of these approaches are being pursued.

Finally, the proposed texture discriminant is intimately related to our
modeling assumptions. When applied to realizations of stochastic models for
which it was developed, the performance is excellent. Assessment of the true
value of this approach, however, will require relative performance evaluation

vis-4-~-vis existing approaches on real-world data. This relative evaluation

should be respect to both accuracy and computational cost.
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APPENDIX

CORRELATION/EDGE DENSITY DISCRIMINATOR

The correlation/edge density discriminator bases its decisions on maxi-

mum likelihood estimates p,A of the correlation of points separated by a distance d

and the density of edges respectively. A linear discriminator has been used to sepa-
rate the p,% plane into appropriate regions. This discriminator parallels

the log-likelihood discriminator to the extent that observations of pairs

of points within a window are assumed independent and furthermore the window-

ing operation is replaced by & weighted window implemented as a 2-D recursive

digital filter. Here, however, the likelihood functionals are maximized over

a continuum of values rather than a finite set of hypothesis.

The maximum likelihood estimate of the correlation will be formed under
the assumption that observations at pairs of points are zero mean jointly
Gaussian random variables. The p.d.f. of N independent observations of two
Jointly Gaussian random variables conditioned upon their correlation and

variance is given by
1

pl(x;.y,), i=l’gl°’°}= [2n02(1-p2) 2]¥

(A-1)
2_ 2
iil(xi 2oxiyi+yi)
e I 204(1~-p*) )

Here the N points under consideration would be the set of pairs of pixels
within a window W and separated by a distance d while the random variables
X and Y correspond to a pair of values taken on by each pair of pixels.

The values of p and o for which the above quantity is meximized are their

maximum likelihood estimates. It will prove more convenient to maximize the

logarithm of the above as given by
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Lp,a)=-Nen(2n0?)- g-ln(l-pz) a

N
2_ 2 -
1&; (x§-20x, ¥, +y7) (A-2)
20%(1-p%)

T ———

Upon setting the partials of the above expression with respect to p and o to

zero and solving for p and o we obtain the estimates

- N

2=} (xly2)/en (A-3a)
L& i
i=l

and

. N

p= ] xy, /N6 . (A-3b)
i=1

- As in the log-likelihood discriminator the summations above over a window were

replaced by a low pass filter. ' g
The maximum likelihood estimate of the edge density will be made under the

assumption that the occurrence of edges along an arbitrarily placed line can

be described as event times of a Poisson process. Then the probability of

observing No intervals of length 4 with no events and Ne intervals with one

or rore events under the assumption that the edge density is A is given

by [15]

(NO+Ne)!

PNy N [2) = W IN_T lexp(-3a)] © [1-exp(-ra)T® . (A-b)

It will prove convenient to work with the logarithm of the above as

(NO+Ne)!
No!Ne!

isaiatioh. . o xSl

2(N0,Ne|k) = 2n + NO(-Ad) + N, tn[l-exp(-2d)]  (A-5)

Setting the derivative of the above with respect to A to zero and solving for

A yields
] ~ _ l .
\=%1ing, (A-6)
3: where BO = NO/(N0+Ne) is the fraction of intervals with no events. In fact,

the quantity used in the discriminator was not A but rather an estimate of BO

RS
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formed by passing the output of a simple edge detector through the lowpass
filter used for the log-likelihood discriminator. The edge detector simply
applies a threshold to the difference between the gray levels at pairs of
pixels separated by distance d. Here the value of 4 is the same as that used
by the log-likelihood discriminator (3 pixels) while the lowpass filter is

the Wiener filter designed under the assumption of moderate interference.

Additional details can be found in [29].
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Figure 1

Realizations of Two Random Fields Possessing
Identical Power Spectral Densities;
L, A=0.08, p=0.0; R, A=0.16, p=0.5

Figure 2

Selected Realizations of Random Fields
Possessing Identical Edge Density;
W, Rectangular v=1, A=0.08, p=0.0,
N, Rectangular v=«, 1=0,08, p=0.0,
SE, Polygonal v=1, A=0.32, p=0.0.
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a.) A=0,0125, p=-0.9 b.) A=0.0125, p=0.0 c.) A=0.0125, p=0.5

d.) A=0.025, p==0.9 e.) A=0,025, p=0.0 £.) A=0,025, p=0.5

e

g.) A=0.05, p=-0.9 h.) A=0.05, p=0.0 i.) 2=0.05, p=0.5

Figure L

Selected Realizations of Random Field

Generated by Poisson Partitions
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8.) A=0.0125, p=-0.9 b.) A=0.0125, p=0.0

d.) A=0.025, p=-0.9 e.) A=0.025, p=0.0

g.) 1=0.05, p=-0.9 h.) A=0.05, p=0.0

Figure 5

Selected Realizations of Random Field

Generated by Periodic Partitions

c.) A=0.0125, 0=0.5

r.) x=0.,025, p=0.5

1.) A=0.05, p=0.5




Figure 6

Selected Realizations of Random Field Generated

by Stationary Renewal Point Process Possessing

Garma Distributed Interarrival Distribution and
with 2=0.05 and 0=0.0
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Figure 7
Parameterization of Directed Line Segment
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a)

Xe=.0125,

p=-0.9

h) Ae=0.05, p=0.0

Figure 8§

Selected Realizations of Random Field

Generated by Polyronal Partitions
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a) Autccorrelation tunetion b)  tower Speetral [encity

0= - s

e) Autccorreiatioc, oancuion

STt s e Lt manction f} Power Spectral Density
LT o= .5

Figure 9

Autocorrelation Function and Power Spectral Density
of 2-0) Raninm “heckerboard Process Generated by

Periodic Partitions
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— gy,

d.) ).EHEH#.O, p=-0.9 e.) xe]gg‘:_::.m, o=t £ jialtson, weis

g.) Ae||g]|=8.0. 0=-0.9 h.) Ae|]3||=8.0, 0=0.0 i) A [ull=€.0, e=0.5
Figure 10

Selected Joint Probability Density Functions

for Rectangular Partition Process, v=1l




a.) rgiiuli=0.5, p=-0.9 v liul]=0.5, +=0.0 c.) agliul'=0.5, =05

el

400

o) agitul]=2.0, 0=0.5

d.) 2\, lfult=2.0. =-0.9

'
l

q.) Ae(‘u1§=8.0. ==-0.9 h.) A llu]1=8.0, 0=0.0 i) Al 1ul[=8.0, 0=0.5

K Figure 11
Intensity Plots of Logarithm of Selected
Joint Porbability Density Functions

for Rectangular Partition Process, v=1
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a.) x tlyl|=0.5, p=-0.9 b.} a,llull=0.5, e=0.0 c.) 2 llul|=0.5, 0=0.5

' u

d.) A Mluf}=2.0, p=-0.9 e.) AeHgH-Z.O. 0=0.0 £.) 2 lluli=2.0, 0=0.5

9.) A,]1ul(=8.0, p=-0.9 h.) 2gllul1=8.0, 0=0.0 1.) Agllul[+8.0, 0=0.5

Figure 13

Intensity Plots of Logarithm of Selected Joint
Probability Density Functions for Polygonal
Partition Process
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: Figure 16

Point Spread Function of Composite Filter
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NORMALIZED RESPONSE, IN dB
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a.) Weak Interference Model
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b.) Moderate Interference Model

‘NORMALIZED RESPONSE, In dB
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c.) Strong Interference Model

Figure 17

Illustration of Typical Power Spectral Densities
And Associated Wiener Filter Response
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a.) Desired Xesponse for b.) Actual Response for
Weak Interterence Weak Interference

c.) Desired Response for d.) Actual Response for
Moderate Interference Moderate Interfererce

e.) Desired Resporce for f.) Actual Response for
Strongt Interforence Strong Interference

Figure 18

Frequency Pesponses of Desired and Actual Filters
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b.) Log - Likelihood Discri-
A=0.16; NE, p=0.5, minator i
A=0.32; S,p=0.0,1= '
0.32 1

c.) Correlation Discriminator d.) Correlation /7 Edge
Discriminator

Figure 19

Illustration of Texture Discrimination Results
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a.) Original b.) Weak Interference

c.) Moderate Interference d.) Strong Interference

. Figure 20
Performance of Log-Likelihood Texture Discriminator

for Various Assumed Interference Levels




